

Trace Mineral Function

Ken Bruerton

Protea Park Nutrition Services

2009

What are Trace Minerals?

- They are metals common in soils that are also essential for life.
- Animals and plants cannot live without them
- Sometimes not at sufficient concentration to maximize performance
- They play a central role in mediating many of the functions of the body's cells
- Involved in almost all areas of cell metabolism.

Trace Minerals for Cattle

- Some important trace minerals in ruminant nutrition are:
- Zinc (Zn)
- Manganese (Mn)
- Copper (Cu)
- Iron (Fe)
- Selenium (Se)
- Cobalt (Co)
- Iodine (I)
- Chromium (Cr)

The Role of Trace Minerals in Ruminant Nutrition

1. Zinc (Zn)

Functions:

- Carboxypeptidase enzymes – protein synthesis
- Keratinase – skin formation bone formation, wound healing.
- Hoofs – hoofs contain keratin
- Immune system

The Role of Trace Minerals in Ruminant Nutrition

2. Manganese (Mn)

Functions:

- Bone growth – important in connective formation (collagen)
- Enzyme cofactor – many metabolic enzymes, reproduction
- Energy metabolism – isocitrate dehydrogenase (TCA Cycle)

The Role of Trace Minerals in Ruminant Nutrition

3. Copper (Cu)

Functions:

- Haemoglobin synthesis – enzyme cofactor
- Energy metabolism – cytochrome oxidase
- Anti-oxidant system – superoxide dismutase
- Other enzyme systems
- Coat colour

The Role of Trace Minerals in Ruminant Nutrition

4. Iron (Fe)

Functions:

- Haemoglobin – essential component of the haem molecule; deficiency causes anaemia.
- As a cofactor in a number of dehydrogenase enzymes
- In mitochondrial electron transport chain – energy release – Cytochrome P450
- Almost never deficient in cattle
- Lots of iron in P supplements – care must be taken to not add too much

The Role of Trace Minerals in Ruminant Nutrition

5. Selenium (Se)

Functions:

- Anti-oxidant system – Glutathione peroxidase
- Thyroid function – Converts Thyroxine (T4 – inactive) to tri-iodo thyronine (T3 – active thyroid hormone)
- Thioredoxin reductase – reduced thioredoxin: DNA synthesis; disulphide reduction; immunomodulation; pregnancy; birth; central nervous system
- Selenoproteins – 8 or more different selenium proteins isolated with largely unknown functions

The Role of Trace Minerals in Ruminant Nutrition

6. Cobalt (Co)

Functions:

- Central to vitamin metabolism in that it is contained in Vitamin B12 (cyanocobolamin)
- The rumen bacteria make vitamin B12 using dietary cobalt.
- Vitamin B12 is an essential co-factor in enzymes associated with energy metabolism and recycling of the essential amino acid methionine

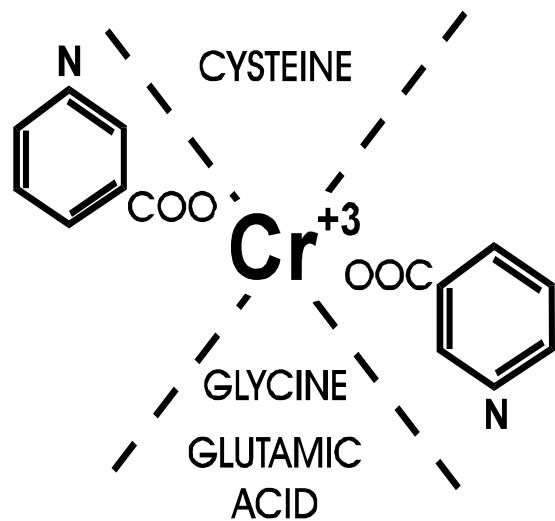
The Role of Trace Minerals in Ruminant Nutrition

7 Iodine (I)

Functions:

- Iodine is a component of the thyroid hormone which is responsible for regulation of metabolic rate.
- Deficiency of I results in goitre (enlargement of the thyroid gland).
- This in turn results in slow growth

The Role of Trace Minerals in Ruminant Nutrition


8 Chromium (Cr)

Functions:

- Part of glucose tolerance factor which helps bind insulin to body cells
- Glucose transport
- Stress
- Reproduction

Trace Minerals in Reproduction

- Proposed structure of glucose tolerance factor

Minerals and reproduction

Fe

Enzymes, haemoglobin, placenta, uteroferrin, immunoglobulin

Se

Prolonged calving, milk let-down, mastitis, weak

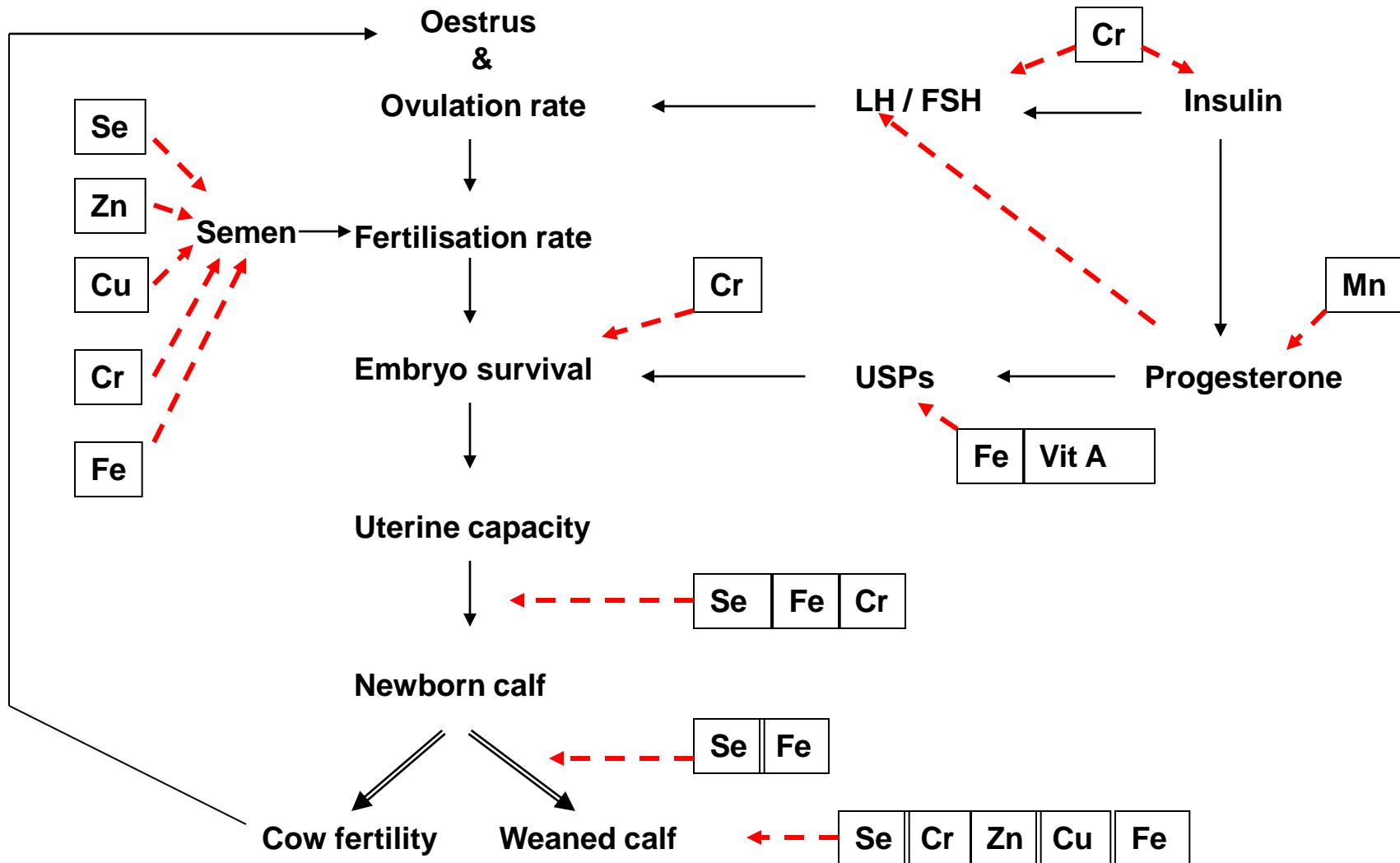
Cr

Insulin, LH/FSH, progesterone, stress

Cu

Enzymes, fertility in many species, iron mobilisation

Zn


Enzymes, LH/FSH, uterine involution, milk synthesis, testicular sperm development

Mn

Enzymes, CL, anoestrus, abortion, still-births

Components of Cow Productivity

Role of trace elements

Trace Minerals

- Many soils in Australia are deficient in various trace minerals
- They must be consumed in the diet from plants or supplements
- You may not or may not know the status of your area
- Extremely small amounts are required
- The safe way is to supplement eg, via a lick